Nano-Scale Positioning Design with Piezoelectric Materials
نویسندگان
چکیده
منابع مشابه
High speed nano-scale positioning using a piezoelectric tube actuator with active shunt control
Piezoelectric tube scanners are the actuators of choice in scanning probe microscopy. These nanopositioners exhibit a dominant first resonant mode that is excited due to harmonics of the input scan signal. This introduces errors in the scan obtained. The presence of this resonant mode limits the upper bound of a triangular scan rate to around 1/100th of the first mechanical resonance frequency....
متن کاملNano-Scale Characterization of a Piezoelectric Polymer (Polyvinylidene Difluoride, PVDF)
The polymer polyvinylidene difluoride (PVDF) has unique piezoelectric properties favorable for Micro-Electro-Mechanical Systems (MEMS) and Nano-Electro-Mechanical Systems (NEMS) applications. In the present research, we conducted nanometer-length scale characterization of this material using several high-resolution techniques. Specifically, we used an atomic force microscope (AFM) to study the ...
متن کامل3D positioning scheme exploiting nano-scale IR-UWB orthogonal pulses
In these days, the development of positioning technology for realizing ubiquitous environments has become one of the most important issues. The Global Positioning System (GPS) is a well-known positioning scheme, but it is not suitable for positioning in in-door/building environments because it is difficult to maintain line-of-sight condition between satellites and a GPS receiver. To such proble...
متن کاملOptimal Design and Control of a z-Tilt Piezoelectric Based Nano-Scale Compensation Stage with Circular Flexure Hinges
The Taguchi method is widely used for the optimization of mechanical design and this study is used it in the design of a 2D circular flexure hinge for a z-tilt piezoelectric based nano-scale compensation stage. Maximum displacement of the stage is 16 μm at z-axis and ±30 arcsec at θx and θy. The most important design parameters for such a flexure hinge are minimal diameter, body height, and not...
متن کاملLow-Power Adder Design for Nano-Scale CMOS
A fast low-power 1-bit full adder circuit suitable for nano-scale CMOS implementation is presented. Out of the three modules in a common full-adder circuit, we have replaced one with a new design, and optimized another one, all with the goal to reduce the static power consumption. The design has been simulated and evaluated using the 65 nm PTM models.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Micromachines
سال: 2017
ISSN: 2072-666X
DOI: 10.3390/mi8120360